

CONCEPT OF CGMP (CURRENT GOOD MANUFACTURING PRACTICE)

Mr. Shideshwar G. Lawangare^{1*}, Mr. Saurabh Bondre², Dr. Sunil Jaybhaye³

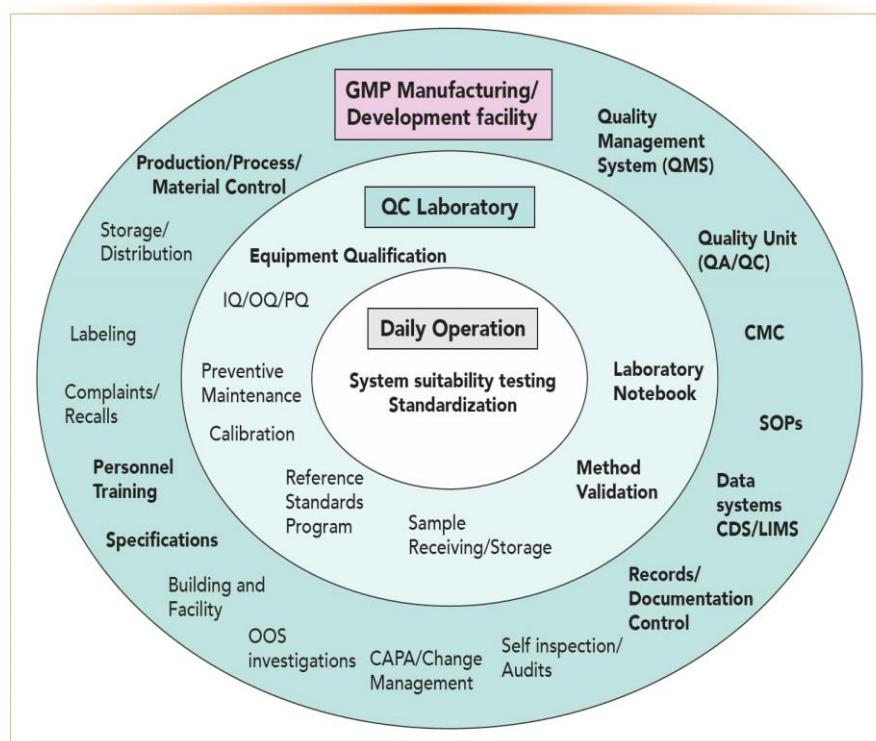
Institute Of Pharmacy, Badnapur, Jalna 431202.

Dr. Babasaheb Ambedkar Technological University, Lonere, Raigad.

Received: 01 November 2025

Revised: 15 November 2025

Accepted: 05 December 2025


Corresponding Author: Mr. Shideshwar G. Lawangare

Address: Institute Of Pharmacy, Badnapur, Jalna 431202.

➤ ABSTRACT

In the past ten years, stem cell research has made progress as a new way to treat diseases in the fields of tissue engineering, regenerative medicine, cell and gene therapy. This has led researchers to create clinical-grade cell and tissue products. To make sure that the product is safe, effective, and of good quality, it must be carefully controlled during the process of going from research to clinical use. The regulatory body for the production of cell and tissue should have designed approved a current good manufacturing practice (cGMP) facility for making these clinical-grade cell and tissue-based products. The regulatory agencies around the world enforce cGMP, which is the system or practice that controls the authorisation and licensing of manufactured goods like drugs, food and drinks, cosmetics, medical devices, and cell and tissue-based products. The quality management system is the most important part of cGMP for controlling the manufacturing process (which includes quality control testing and release of cell therapy products), facility management (which includes design, environmental control and monitoring, maintenance, equipment, personnel access, cleaning), validation, personnel training, competency, and records. To make a safe and high-quality product for people to use, the cGMP facilities for cell and tissue therapy should be built to a higher standard and follow the pharmaceutical manufacturer's guidelines. The facility needs to have a cleanroom that is the right size and has different class or grade areas (Grade A, B, C, and D) based on how clean the air and particles are. The facility's environmental control, monitoring, and upkeep are very important to keep contaminants out and make sure it runs smoothly. Prior to the manufacturing and therapeutic release of cell and tissue-based products, the standard

operating procedures (SOP) for all associated processes must be established and validated. This chapter will cover the cGMP quality system, facility management, making clinical-grade cell and tissue-based products, and ethical issues.

Fig. 1: cGMP Overview For The Analytical Chemist.

➤ KEYWORDS

1. Quality Assurance (QA)
2. Quality Control (QC)
3. Standard Operating Procedures (SOPs)
4. Validation
5. Documentation
6. Compliance
7. Regulatory Standards
8. FDA (Food and Drug Administration)
9. WHO Guidelines
10. HACCP (Hazard Analysis and Critical Control Points)
11. Product Safety
12. Process Control
13. Batch Record
14. Auditing and Inspection

15. Training and Personnel
16. Equipment Calibration
17. Sanitation and Hygiene
18. Facility Design
19. Risk Management
20. Continuous Improvement

➤ INTRODUCTION

cGMP (Current Good Manufacturing Practice)

The rules and regulations enforced by regulatory bodies like the U.S. Food and Drug Administration (FDA) to guarantee that products—particularly pharmaceuticals, food, and medical devices—are consistently produced and controlled in accordance with established quality standards are known as current good manufacturing practice, or cGMP. The "current" in cGMP highlights how manufacturers must employ modern systems, technologies, and procedures to guarantee the quality and safety of their products. Every facet of production is covered by cGMP, including staff hygiene and training, documentation of every procedure, and the raw materials, tools, and facilities utilised. Strong quality management systems, thoroughly documented processes, and appropriate validation and testing protocols are necessary for manufacturers to meet this requirement. In order to guarantee that every product put on the market is safe, pure, and effective, cGMP's primary goal is to prevent contamination, mix-ups, deviations, failures, and errors. In addition to being a legal necessity, cGMP compliance demonstrates a dedication to upholding the highest standards of quality, safeguarding the public's health, and fostering consumer confidence.

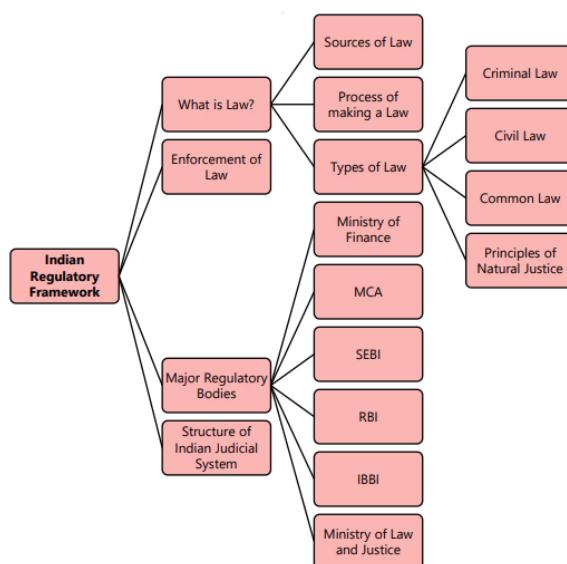
Fig. 2: cGMP For Finished Pharmaceutical.

➤ Principles of cGMP (Current Good Manufacturing Practice)

Pharmaceutical and healthcare products must be consistently produced and controlled to meet quality standards suitable for their intended use, according to the cGMP principles. Quality management, which guarantees that every part of production—from sourcing raw materials to packaging the finished product—is meticulously planned, carried out, and monitored, is one of the fundamental concepts.

Proper facility and equipment design and maintenance is another crucial idea that helps avoid contamination, cross-contamination, and mix-ups during manufacturing. In order to identify and promptly correct deviations, cGMP also places a strong emphasis on documented procedures and record keeping, making sure that every operation is precisely described and traceable. Another fundamental idea is personnel training and hygiene, which calls for all workers engaged in production to be competent, well-trained, and uphold strict cleanliness standards. Additionally, change control and process validation guarantee that any newly implemented or altered procedure consistently yields outcomes that satisfy predetermined standards.

Systems for quality assurance and control make sure that goods are tested and meet standards before being released. In general, the cGMP principles seek to incorporate quality into the product at every level, guaranteeing safety, effectiveness, and consistency while safeguarding consumers and upholding legal requirements.

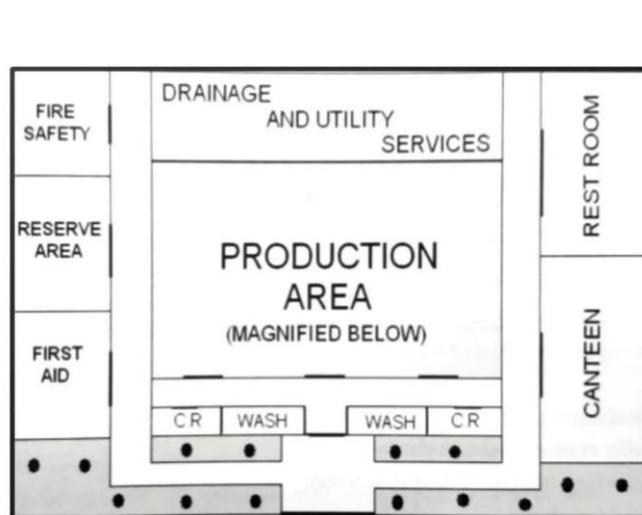

Fig. 3: A Guide to Current Good Manufacturing Practices.

➤ Regulatory Framework and Guidance of cGMP

The regulatory framework and current good manufacturing practice (cGMP) guidelines provide the basis for ensuring the quality, safety and efficacy of pharmaceuticals, food products and medical devices. These regulations are created and enforced by national and international regulatory authorities such as the US Food and Drug Administration (FDA), the European Medicines Agency (EMA) and the World Health Organization (WHO). In the United States, cGMP requirements for drugs are described in Title 21 of the Code of Federal Communities (CFR) Parts 210 and 211, while medical devices are under 21 CFR. Part 820. Similarly, other regions follow their own specific guidelines, for example EU GMP guidelines in Europe and List M of the Drugs and Cosmetics Act in India.

These regulations provide a comprehensive framework covering all aspects of production, including facility design, equipment qualification, personnel training, production processes, quality control and documentation practices. Regulatory authorities conduct periodic inspections and audits to ensure compliance and may issue warnings, fines or product recalls for violations. In addition to statutory laws, organizations such as the International Council for Harmonization (ICH) publish globally harmonized guidance documents (such as ICH Q7, Q8, Q9 and Q10) that standardize quality management and risk assessment principles across the industry.

In general, the regulatory framework and cGMP guidelines are designed to maintain consistent product quality worldwide, promote continuous improvement and protect public health by ensuring that every product brought to market is safe, pure and effective.


Fig. 4: Indian Regulatory Framework.

➤ Facility Design and Environmental Control in cGMP

Facility design and environmental control are essential elements of cGMP (Current Good Manufacturing Practice) that ensure the consistent production of safe, clean, and high-quality products. A well-designed production facility should support an efficient workflow, minimize the risk of contamination and allow for easy cleaning and maintenance. The layout of the facility must follow a logical flow of materials, personnel and processes from raw material input to finished product packaging to avoid contamination and confusion.

Separate areas are often defined for different operations, such as weighing, mixing, filling, labeling and storage, depending on the type of product being produced. Environmental control plays a vital role in maintaining product quality and safety. This includes regulating temperature, humidity, air pressure and particulate matter, as well as using high-efficiency particulate air (HEPA) filters in clean rooms to ensure controlled air quality. Appropriate ventilation systems with differential air pressures help prevent cross-contamination between different cleaning areas.

In addition, strict cleaning and hygiene procedures, as well as monitoring for microbial and particulate contamination, are essential to maintain a controlled environment. The facility must also be constructed of smooth, nonporous, corrosion-resistant materials to prevent the accumulation of dust or germs. Proper lighting, drainage and pest control systems also help maintain hygiene standards. Together, effective facility design and environmental control ensure that manufacturing processes operate in optimal and compliant conditions, ensuring product integrity and patient safety in accordance with cGMP principles.

Fig. 5: Design & Construction of Plant As Per cGMP.

➤ Equipment and Validation in cGMP

Equipment and validation are essential pillars of cGMP (Current Good Manufacturing Practice) that ensure consistent product quality, process reliability and compliance with regulatory standards. All production equipment used in the pharmaceutical and allied industries must be designed, installed, calibrated, maintained and cleaned correctly to perform their intended function without introducing contamination or errors. The equipment must be constructed of non-reactive, non-corrosive and easy-to-clean materials to avoid any negative effects on the product. In addition, the equipment layout must allow for an efficient workflow and avoid cross-contamination between processes.

Validation is the systematic process of demonstrating that any device, system, or process consistently produces results that meet predetermined quality standards. Provides documented evidence that equipment and processes are working as intended. The main types of validation include installation qualification (IQ), which verifies that the equipment has been installed correctly according to specifications; Operational Qualification (OQ), which confirms that the device works correctly under defined operating conditions; and performance qualification (PQ), which ensures that the system performs stably as required in actual production.

Other forms include process validation, cleanliness verification and IT system validation, depending on the scope and complexity of the operations. Regular preventive maintenance, calibration and revalidation are also necessary to ensure continued reliability and compliance. Any changes to equipment, materials or processes must be evaluated through a change control system to determine if revalidation is required. Proper documentation of all validation and maintenance activities is mandatory under GMP as it ensures traceability and accountability. In general, well-maintained and validated equipment forms the backbone of quality assurance, ensuring that every product manufactured meets the highest standards of safety, purity and efficacy.

➤ Materials Management and Supply Chain in cGMP

Materials management and supply chain control are essential elements of cGMP (Current Good Manufacturing Practice) that ensure consistent availability, quality and traceability of all materials used in production. Effective materials management begins with careful selection and qualification of suppliers and vendors, who must meet strict quality and regulatory standards. Every raw material, intermediate component and packaging must be

tested, verified and approved before use in production to ensure that it meets predetermined specifications. Upon receipt, materials are inspected for identity, purity, strength, and quality, then properly labeled, quarantined, and stored in appropriate environmental conditions to avoid contamination, confusion, or degradation.

The supply chain in a complete GMP system emphasizes transparency, control and documentation at every stage, from procurement to distribution. Materials must be traceable throughout their life cycle, ensuring that any deviations or defects can be identified and corrected quickly. Storage and handling areas should be well organized, temperature and humidity controlled where necessary, and equipped with environmental monitoring and data recording systems. First in, first out (FIFO) or first out, first out (FEFO) are generally applied to ensure that materials are used within their approved term.

In addition, robust inventory control systems, lot recording documentation and change control procedures are used to effectively manage and track materials. Any returned, rejected or recalled material must be clearly identified and segregated to prevent accidental use. Close coordination between quality assurance, manufacturing and purchasing departments is essential to maintain a reliable supply chain that supports uninterrupted production while meeting quality standards.

In general, effective materials management and supply chain practices under Good Manufacturing Practices (cGMP) help ensure that only high-quality, traceable and properly handled materials are used in manufacturing, ensuring the safety, purity and efficacy of the final product, while maintaining full regulatory compliance.

➤ Production and Process Controls in cGMP

Manufacturing and process controls are at the heart of current good manufacturing practices (cGMP) because they ensure that each product is always manufactured to meet its predetermined quality attributes. These controls include a systematic approach to the monitoring and management of all phases of production, from the handling of raw materials to the final packaging of finished products. The main objective is to establish a control condition in which all critical parameters such as temperature, pressure, mixing time, pH and environmental conditions are maintained within validated limits. Each step of the manufacturing process must be performed in accordance with approved written procedures (standard operating procedures or SOPs) to minimize variability and avoid errors, contamination, or confusion.

Before starting production, all equipment, raw materials and process steps must be checked for readiness and compliance with specifications. In-process controls, such as sampling and testing during production, are implemented to detect and correct deviations in real time. These include checks for weight change, tablet hardness, solution clarity and mixing uniformity. In addition, process validation ensures that the manufacturing method is capable of consistently delivering products that meet quality standards under actual operating conditions.

Proper documentation is an essential part of production and process control. Detailed records of batch production should be kept to ensure complete traceability, allowing any problem to be investigated effectively. Change control and deviation management systems are used to assess any changes or nonconformities to ensure continued compliance and product integrity. The personnel involved in the production must be trained and qualified and hygiene standards must be maintained throughout the process.

In general, manufacturing and process controls in cGMP aim to integrate product quality rather than relying solely on final product testing. By maintaining strict adherence to proven procedures, continuous monitoring, and comprehensive documentation, manufacturers ensure the continued production of safe, effective, and high-quality products.

➤ Quality Control Laboratory and Testing in cGMP

The quality control laboratory (QC) is the basis of current good manufacturing practices (cGMP), responsible for verifying that raw materials, in-process materials and finished products meet defined quality specifications. It plays a crucial role in ensuring that only the purest, safest and most effective products reach the market. The quality control laboratory operates under strict regulatory and procedural controls, with all tests performed according to validated analytical methods and approved written procedures.

Testing in a quality control laboratory includes physical, chemical, microbiological and biological evaluations to confirm the identity, strength, quality and purity of materials and products.

Each material, whether raw, intermediate or final, is subjected to sampling, analysis and documentation before being released or rejected. The laboratory should be well designed to avoid cross-contamination and mix-ups, with separate areas for activities such as

microbiological testing, stability studies and instrument calibration. Equipment such as chromatographs, spectrophotometers and balances must be qualified, calibrated and maintained regularly to ensure their accuracy and reliability. Environmental conditions, including temperature and humidity, must be continuously monitored to maintain the integrity of samples and reagents.

All test results are carefully recorded in laboratory notebooks or electronic systems, ensuring full data integrity, traceability and compliance with regulatory requirements such as ALCOA + principles (attributable, legible, contemporary, original, accurate, etc.). Any out-of-specification (OOS) or out-of-trend (OOT) findings should be promptly investigated, documented and resolved before a batch decision is made. The quality control laboratory also performs stability tests to determine product life and suitable storage conditions.

Essentially, the quality control laboratory serves as the gatekeeper of product quality in a GMP manufacturing system. Adhering to rigorous testing protocols, validation practices and documentation standards, we ensure that every product brought to market is safe, effective and of consistent quality, meeting both regulatory compliance and consumer trust.

➤ Documentation, Records, and Data Integrity in cGMP

Documentation, data and data integrity are the fundamental pillars of current manufacturing practices (cGMP), as they ensure transparency, traceability and accountability throughout the manufacturing process. Adequate documentation provides written evidence that each stage of production, testing and distribution has been carried out in accordance with approved procedures and regulatory requirements. In a GMP environment, the rule is simple: "If it's not documented, it's not happening." » This highlights the critical role of accurate and complete record keeping to demonstrate compliance and maintain product quality.

All activities, from the receipt of raw materials to the release of the final product, must be recorded in controlled documents, such as standard operating procedures (SOP), batch production records, test reports, equipment logs, and cleaning records. These documents must be prepared, reviewed, approved and updated periodically by authorized personnel to ensure that only the most recent and correct versions are used. Each record must be legible, dated, signed and attributed to the person performing the activity, thus ensuring full responsibility.

Data integrity refers to maintaining the accuracy, consistency and reliability of data throughout its life cycle. This also applies to paper and electronic systems. Regulatory agencies such as the FDA and WHO emphasize the ALCOA+ principles: data must be attributable, legible, contemporaneous, original, accurate, but also complete, stable, consistent and available. Electronic data systems must have adequate access controls, audit trails and backup mechanisms to prevent unauthorized changes or data loss.

Any errors, corrections or deviations must be clearly documented with justifications and no data must ever be deleted or hidden. Maintaining good practices in documentation and data integrity not only ensures regulatory compliance, but also strengthens the credibility of quality decisions, enables effective audits and investigations, and protects patient safety. After all, accurate documentation and reliable data form the backbone of a robust quality management system under cGMP.

Deviations, CAPA and cGMP continuous improvement

Deviations, corrective and preventive actions (CAPA) and continuous improvement are essential elements of a current good manufacturing practice (cGMP) quality system. They ensure that any deviation from established procedures or specifications is identified, investigated, corrected and used as an opportunity to improve overall quality and compliance.

A deviation refers to any unforeseen event or non-conformity that occurs during manufacturing, testing, packaging or storage that may affect the quality, safety or regulatory compliance of the product. Deviations can be minor (with limited impact) or major/critical (with potential risk to product integrity or patient safety). Any deviation must be immediately documented, investigated and evaluated for its root cause using systematic tools such as Root Cause Analysis (RCA), the 5 Whys technique or Fishbone Diagrams (Ishikawa). The purpose of the investigation is not only to correct the immediate problem, but also to prevent its recurrence.

This is where the CAPA system plays a vital role. Corrective actions (CA) address and eliminate the causes of existing nonconformities, while preventive actions (PA) are proactive measures designed to stop potential problems before they occur. CAPA activities must be well documented, time-bound and their effectiveness verified through follow-up reviews or audits. The CAPA process integrates with other quality systems such as change control, risk management and training to ensure overall quality improvement.

Beyond solving individual problems, cGMP encourages continuous improvement as a fundamental quality philosophy. Using data from variances, CAPAs, internal audits, customer feedback and performance metrics, manufacturers regularly evaluate their processes and implement improvements in efficiency, consistency and compliance. Approaches such as quality risk management (QRM), periodic quality review (PQR) and Lean Six Sigma are often used to drive continuous improvement.

In essence, effective deviation and CAPA management, accompanied by a culture of continuous improvement, helps organizations maintain a state of control, reduce risks, improve product quality and enhance regulatory compliance, thus ensuring patient safety and confidence in the pharmaceutical industry

➤ CONCLUSION

Contemporary Good Manufacturing Practices (cGMP) act as the essential assurance of quality system that guarantees pharmaceutical, food, and medical device products are reliably made and regulated according to defined quality benchmarks. The notion of cGMP highlights a preventative, scientifically informed, and risk-oriented method to production, where each phase—from sourcing raw materials to the distribution of the final product—is regulated by stringent guidelines. By implementing principles such as comprehensive documentation, validated methodologies, adequately trained staff, regulated environments, and constant oversight, cGMP reduces the chances of contamination, errors, mix-ups, and product failures. In essence, cGMP transcends a mere compilation of regulations; it embodies a culture focused on quality and ongoing enhancement. It guarantees that consumers obtain products that are safe, effective, pure, and of reliable quality, thus bolstering public health and sustaining trust within the industry.

➤ REFERENCES & APPENDIX

1. U.S. FDA. Current Good Manufacturing Practice (CGMP) Regulations. 21 CFR Parts 210–211.(Pharmaceutical Quality Assurance) – S.C. Chauhan & Y.K. Gupta
2. FDA. (2023). Code of Federal Regulations, Title 21, Parts 210–211: Current Good Manufacturing Practice for Drugs. (Good Manufacturing Practices for Pharmaceuticals) - Graham Bunn
3. Ministry of Health and Family Welfare (India). (2023). Drugs and Cosmetics Act, 1940 & Drugs and Cosmetics Rules, 1945 — Schedule M (Good Manufacturing Practices).

Schedule M outlines GMP requirements for pharmaceutical manufacturing in India. (Pharmaceutical Jurisprudence) -C.K. Kokate

4. Code of Federal Regulations (CFR), Title 21, Part 211 — Current Good Manufacturing Practice for Finished Pharmaceuticals. (Pharmaceutical Manufacturing Handbook: Regulations and Quality) -Shayne Cox Gad
5. ICH Q9 (2005). Quality Risk Management. (Supports risk-based decision-making in equipment selection and validation.)
6. PIC/S (2023). Guide to Good Manufacturing Practice for Medicinal Products.
7. European Commission. (2023). EudraLex – Volume 4, EU Guidelines for Good Manufacturing Practice.
8. FDA (2018). Guidance for Industry: Data Integrity and Compliance With Drug CGMP. (Describes ALCOA/ALCOA+ principles, audit trails, raw data handling, and documentation integrity.)
9. WHO (2014). WHO Good Manufacturing Practices for Pharmaceutical Products: Main Principles. WHO TRS 986, Annex 2. (Describes quality systems, controlled environments, documentation, personnel training, contamination prevention.)